If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-16y-52=0
a = 3; b = -16; c = -52;
Δ = b2-4ac
Δ = -162-4·3·(-52)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{55}}{2*3}=\frac{16-4\sqrt{55}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{55}}{2*3}=\frac{16+4\sqrt{55}}{6} $
| 5(x-2)=4x+10=6x | | 27.50+a=98.50 | | 115=2x+25 | | |1+3x|=11 | | 2(3-5n)-6n=5n-78 | | 12w-48+84=4w-8 | | 7(n-87)=63 | | 5x-3=x+11+2x | | Y-12=-3/5(x+2) | | F(-2)=3n-4 | | 21+(2-x)+12=44 | | -5p-12=-57 | | -2(-3x+4)+4x=52 | | -3/8x-9/40x+1/5x=-80 | | 3x²+6=114 | | 34+3x=8(4x-3) | | 2(n+1)-5=2n+8 | | -3y+2=-31 | | A=x+59+84 | | 247=-x+144 | | X+3+4x=34 | | x−299=8x+9 | | x-7/4=10/2 | | d/4-5=-1 | | 6(g-75)=54 | | -5^2+25x-15=115 | | 204-x=20 | | -22=1+7.2p+3.64 | | -2+5=2x-11 | | 4x=335 | | –5x-7+10x=(-6) | | F(-6)=-2n+6 |